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ABSTRACT

When the solar wind interacts with the moon, the plasma shadow
region on the dark side of the moon forms a long lunar wake. 1In the
plasma umbra a detectable plasma flow is absent; and in the penumbra
the plasma flux increases from the void condition in the umbra to the
interplanetary condition outside. A theoretical model for perturbations
of the magnetic field in the p}asma shadow is studied by directly
solving Maxwell's equations for steady state solutions. The perturbation
of the field is assumed to be due to the magnetization current, the
gradient drift current and the curvature drift current. Numerical
solutions are obtained to describe the variations of the magnetic field.
The results obtained are in good agreement with experimental observations

from the Explorer 35 satellite.




I. INTRODUCTION

In a recent paperl, hereafter to be referred to as Paper 1, the
solar wind flow around the moon has been treated as a free molecule flow
of guiding-center plasma. Under the assumption that the guiding-center
particles move along straight-line paths unless intercepted by the moon's
surface, analytical solutions have been obtained to describe the ion flow
field in the vicinity of the moon. Theoretical results predict that
when the solar wind interacts with the moon, a long non-cylindrically
symmetrical lunar wake forms downstream of the moon. The theoretical
deécription of the flow conditions in thé interaction region given in
Paper 1 agrees very well with experimental observations®®from the lunar
orbiting satellite Explorer 35: (1) Shock waves, especially a bow shock,
do not exist in the vicinity of the moon, and (2) a plasma shadow region
forms on the dark side of the moon. In the umbral region a detectable
plasma flow is absent; and in the penumbral region the plasma flux
increases from the void condition in the umbra to the interplanetary
condition outside,

The magnetic field experinentsz’4’5

on the Explorer 35 spacecraft
have revealed many interesting features of the interplanetary magnetic
field in the lunar wake. The interplanetary magnetic field appears to
be convected through the lunar body without large perturbations. As the
satellite passes through the lunar wake, the magnitude of the magnetic
field is observed to increase in the umbral region, while outside the

umbra the perturbation of the magnetic field appears to follow a coherent

pattern of alternating decreases and increases in the magnitude of the field.



Ness et al.® suggested that perturbations of the magnetic field
in the vicinity of the moon are due to the induced electric current
contributed from three sources: the magnetization current, the gradient
drift current and the curvature drift current. A theoretical investigation
of the perturbations of the magnetic field in the lunar wake due to
the induced electric current is reported in this paper.

A steady state solution is studied assuming that upstream of the
moon the undisturbed interplanetary magnetic field B, is not aligned
with the direction of the undisturbed solar wind velocity 996’7° In
Paper 1, the flow field has been found to be symmetrical about the plane
passing through the center of the moon and parallel to both U, and B,.
Variations of the magnetic field in the plane of symmetry are calculated
by considering that the number density N and the parallel pressure P
of the plasma are approximated by the free molecule flow solution, the
so called "zeroth order'" solution, obtained in Paper 1. Theoretical
solutions obtained under this approximation can explain the gross features
of the perturbations of the interplanetary magnetic field observed in
the lunar wake.

Inevitably, perturbations of the magnetic field and the induced
electric field will slightly modify the trajectory of the guiding-center
particle and hence modify the plasma flow. This modification should
produce a "first order" theoretical solution for the plasma flow. Of
course this first order solution will in turn modify the solution for
the field perturbations. These higher order effects are not included

in the present study.



II. GOVERNING EQUATIONS

The variation of the magnetic field is governed by Maxwell's
equations. Under the assumption that the density of the total electric
current in the lunar wake is composed of the density of the magnetization
current, iM’ the gradient drift current, QG’ and the curvature drift

current, {R, Maxwell's equations can be written as

v-B =0 (1)
and
4
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v*B — Uy + dg + Ip) (2)

Let C denote the relative velocity of a charged particle with
respect to the moving magnetic line, and e, the unit vector along the
direction of B. The gyratior of a charged particle of mass m about the
field line with the perpendiéular velocity component C, gives rise to a

magnetic moment
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The magnetic moment is related to the perpendicular pressure, P,, by
PL=B‘|‘pfd_g

where £ is the distribution function. Thus the adiabatic invariant of the

magnetic moment is equivalent to

P,/N B = constant, (3)



where N denotes the number density of the charged particles. Other
approaches to yield Eq. (3) can be found in References 8 and 9. The

density of the magnetization current can be expressed as

Jy = -9 x (e P, c/B). (%)

In the presence of a gradient of the magnetic field or a curvature
of the field line, the gradient and the curvature drift velocity of a

particle of charge q are respectively

(uc/q B) e, x VB

éj‘:

ug = (mCj°c/qB)e; x (&°V &).

Since particles of opposite charge will drift in opposite directions,
electric currents are produced by the gradient and the curvature drift.
The parallel velocity of particles with respect to the moving magnetic

line is related to the parallel pressure by

P“ =JnmC|]afd£ .

Thus the density of the gradient drift current and of the curvature

drift current can be expressed as

Jg (Plc/Ba)gl xYB (5)

and

(Pyc/B)e; x(e; "Ve, ). (6)



Making use of equations (3)-(6), Eq. (2) can be expressed as

P P
G &§5*)Zx§.= %F—31X(if VN + Pyes +Ve;) "

Here the last term on the right hand side is due to the curvature drift

current,

Let the subscript o denote the undisturbed interplanetary
condition upstream of the moon. Then in terms of the following

dimensionless variables:

b =B/Bys n=N/Ny, p=PFy/P,,
and the dimensionless parameters:

B =81 P,o/By°, N =Pjo/PL,,

Maxwell's equations [(1) and (7)] can be reduced to the following

dimensionless form,

g b=o (8)
and
(n22) ¢ x b= bx ¥n+ Tpey x (e1°Ten). (9)

Let e, and e; be respectively the normal and binormal vector to
the line of force. Then using the Serret-Frenet formulas, it can be

shown that

b e, + (b --g—b)sa

%y x,

Q

xb = blle; +

and



b xvn + Mpex (e1+Ve1) = ez (-b 3—)+ ea(b %£;+ Tpn) .

d
Here # is curvature of the field-lines and . = 2, ez~ LIS ‘ep
0% dxg

is called the abnormality of the field. lMaking use of these two

equations, (9) may be resolved along the directions e;, e, and e; to

give
Q=o0
(n+2b) 3b_ = - p 30
B™ 3% OXa (10)
and (n+2B) b = - p 30 4y [(n+2D) b-1qp]
B Ox %, B

Eqs. (10) indicate that (i) abnormality of the field is always zero
which means there is no torsion of neighboring field-lines, and (1i)
the curvature drift current (Tpuesz) does not directly effect the

variation of b along the binormal direction.



IITI PLANE OF ANALYSIS

Cylindrical coordinates (r, 6, Z) will be used in this paper to
study the equations formulated in Section II. The origin of the
coordinates is located at the moon's center, and the Z-axis is
perpendicular to both the undisturbed solar wind velocity Ho with
respect to the center of the moon and the undisturbed interplanetary
magnetic field Be upstream of the moon. The scale of the coordinate
system is normalized by using the moon's radius as a unit length.

The distribution of the plasma density and the distribution of the
magnetic field are symmetrical about Z = O plane. On the plane of

symmetry

It can be seen from (10) that Eq. (9) has only one non-zero component
along the binormal direction (Z-direction). Thus the variation of the
magnetic field on the plane of symmetry (Z = O plane) is governed by two

equations

13 (rb) +19s, 3by_g (11)
r
and

(12)
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where Y = arctan (bg/by). Through the third term on the left hand side
of (11), the variation of magnetic field on the plane of symmetry couples
with the field on its neighboring planes. 1In the neighborhood of the

Z = 0 plane, the field lines are essentially parallel to this plane. The
third term in Eq. (11) is in general small compared with the other two
terms. In order to analyze the variation of b on the plane of symmetry,
it is assumed that on this plane of analysis the term abz/az can be

neglected from (1l1), thus yielding

7?; (rb,) + %%ﬁ = 0. (13)

Egqs. (12) and (13) suffice to solve for the two unknowns b, and bg on

the plane of analysis provided that n and p are known functions of r and

8.
Introducing a new function A, such that
-1 oA
b =T 3
and (14)
- - %A
by = " 3r

Eq. (13) 1is satisfied. Eq. (12) can now be written as

(15)

2b \™" (dndA , 1 3n dA -sin¥ . q.0Y oY
) (e o2 =55 + ﬂpL_;__(1+3g) + coswar]]

r or
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If the plasma density were not perturbed in the vicinity of the
moon (i.e. n = 1 everywhere), then the trivial solution of (15) would

represent the undisturbed field with

A, = r cos (¢o - 8) (16)

where @, is the direction angle of the undisturbed magnetic field, that
is the angle between - U, and B . The zeroth order solutions for N/NO
and P,/P;, calculated from a free molecule flow model in Paper 1 will be
substituted into Eq. (15) to calculate A. The maximum perturbation

of b by the lunar wake is of the order of 30 percent. The effect of the
field perturbation and the induced electric field on N/No and P /P, is
not included in the calculation. The zeroth order solution of N/N, and
P:/Pjo are known functions of position and two dimensionless parameters:

the direction angle @, and the speed ratio S:
S = Ug/(2kT|jo/my) %,

where the parallel temperature of the plasma T) is defined as

=]

kT;/2 = (1/N) J (mCua/Z)fdg.
-
Therefore, the solution of Eq. (15) will depend on four dimensionless
parameters: 1|, S, @,, and B.
Eq. (15) will be studied in a closed region between two concentric
circles: lur=R. If the outer boundary r=R is chosen at a distance very
far away from the lunar surface, i.e., R>>1, then it may be assumed that

the field is not disturbed on the boundary r=R. It is also assumed tnat
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the field lines are smoothly convected through the lunar body so that
the field is no% disturbed in its interior or on the lunar surface.

Thus the boundary conditions of the problem can be written as

A(r=1l, B)

cos (¢o -9),

and (17)
A(r=R, ©) Rcos(¢o - 08).

A rather simple boundary condition on the lunar surface is assumed
in the present study. However, the method of solution developed in this
paper can be used to study the same problem once the physical properties
of the moon become better understood and a more accurate condition
can be prescribed on the lunar body. The effect of the prescribed
surface condition on the perturbations of the magnetic field is limited
to the immediate neighborhood of the moon, say r < 2. 1In the outside
region the perturbations of the magnetic field are dominated by the
plasma flow field.

An iterative method is used to find the solution of the nonlinear

Poisson equation (15), For this purpose, Eq. (15) may be written as

1 ZA
P o)+ St = Gimy (1= 12,000 (18)
whgre
- 2 “l 3n 3A{-1,1 3n 3Aj-1 sin¥i-]
= = -— b. + —— .
RS S Y A L

o¥j-1 oYy -
(1 + S;—— ) + cosYyy —S%—l]}.

At the ith step, Gi-l ig evaluated based on the golution of Ai-l' At

the first step, the undisturbed solution (:6) ig uced to cvaluate G .
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In each iteration the source term G,

is a known function of r and 8,
i-

and the numerical problem is to solve Poisson's equation for Ai' For
the computations carried out in this paper, the iteration process
continues until the condition of convergence

|b, =b;_4| < 0.001

is met everywhere in the domain of the solution.
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Iv. METHOD OF NUMERICAL SOLUTION

The problem to be discussed is the numerical solution of Poisson's

equation,

13 (roa A - (19)
TS D T SE s o0

sub ject to the boundary condition (17). Here the subscripts i and i-1
have Been dropped from (18). Recently Hockney'® has developed a direct
method for finding the solution of the Poisson's equation in a rectangular
region. His method is extended here to solving Poisson's equation (19)
in a region between two concentric circles.

Introducing s = In r and H = G, Eq. (19) can be written as

az + PA

F " (20)

The outer boundary is chosen at R = exp (6.4) ;'600, where the perturbation
of the plasma density is less than two percent. The problem is then to
solve Poisson's equation (20) in a closed rectangular region: 0 < s < 6.4
and 0 £ @ < 211 in s,@-coordinates. The boundary conditions are transformed
by the mapping to

A (s=0, ©) = cos (§, - ©)

A (s=6.4, 8) = exp (6.4) cos (8, - ©) (21)
and A (s, 8=0) = A (s, 0=2m)

The third boundary condition allows A(s,8) to be Fourier analyzed

with respect to the azimuthal variable 6,
N

A (5,8) =% a.(s,0) + T 1[ac(s,n) cos n@ + ag(s,n) sin nO] (22)
n:

and similarly for H(s,0) where a.(s,n) and ag(s,n) are the Fourier
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amplitudes of the cosine and sine of the nth harmonic. The potential A
will be approximated by the first N modes. Computations are carried out
in this paper by choosing N=20.

On Substituting (22) into (20), the partial differential equation is
reduced to two sets of independent ordinary differential equations relating
the Fourier amplitudes of A(s,8) and H(s,8),

d2

37 ac (s,n) - n®ac(s,n) = he(s,n) (n=0,1,...,N)

and (23)
d? 2
a;g as(s,n) - n aS(S’n) = hs(s,n) (n=1,2,...,N),

subject to the boundary conditions that at s=0 and s= 6.4,

ac(s,1) = exp(s) sinf, | .
ag(s,1) = -exp(s) cos ¢o
T(zm
ac(s,n¥1) =0
and ag(s,n#l) = 0. )

Since H is a known function of s and 8, the term on the right-hand side
of (23) can be calculated from

1
he(s,n) = m j H(s ,0) cos nb de,

and =

TT
hg(s,n) % J.. H(,0) sin n6 go.

The domain of the solution in the s, O-coordinate is spanned by a

(128x360) mesh of uniform mesh spacing

As = 0.05
and

A8 = 1 degree,
with s =0.05m (m=0,1,2,... 128)
and 0 =10/180 (= 0, 1,2,... 360),
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where £ and m are the indices in the © and s directions respectively.
The ordinary differential equations (22) may be written in finite

difference form as

am-1 + foap + a4y = 8,m (m=1,2,...,127) (25)
where fo = -2 - n®(8s)?
and 8 ,m = (8s)? hy .

Here the subscripts s, ¢ and n have been dropped for brevity. a_  has the
prescribed values at m=0,128 given in (24). Eq. (25) constitutes a set of
127 Algebraic equations for the same number of unknowns a; (m=1,2,...127),
and the numerical problem now is that of determining the ap's.

The solution of (25) for aj can be calculated by the technique of

recursive cyclic reduction'®. Consider three neighboring equations from

(25)
ap-2 * o ap-1 + an = 8o,m-1
an-1 + fo ap + agy = 8o,m (26)
an * £5 amrl * an42 T 8o mtl
for m=2, 4, 6, ...126. By multiplying the second equation by -f, and

adding,one can obtain
am.z * f1 ap a0 =81 g ' (27)

where £, =2 - fog

and €i.,m~ %o,m-1 " £o 8o,m t 8o,m+1.

Eq. (27) is identical in form to Eq. (25) except that f, is replaced

by fl and 80 .m by 81 m- While Eq. (25) represents a set of 127 equations,

and Eq. (27) represents only 63 equations. This process of reducing the

number of equations may be repeated, leading to
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am_j + fk am + am+j = gk’m (k=1,2,...,6) (28)

where j= 2k

2

fp, =2 - i 4

and Bk,m = k-1, m-j/2 -~ fk-1 8k-1,m * 8k-1, m+j/2
for m=j, step 2j, until (128-j). For k=6, Eq. (28) gives
ap + fg agy + 2128 = 86,64
This equation is solved directly for ag,. Then from (28), all other

intermediate values of a  are calculated recursively

an < (gk,m T am+j)/fk-
azy, agq are calculated at k=5, a;¢, ayg, agp, aj12 at k=4, etc.
Having obtained all harmonic amplitudes a, (s,n) and ag (s,n) for
$=0.05m (m=0, 1, 2, ... 128), the potential A can be calculated at all
the nodes of the (128x360) mesh by the process of Fourier synthesis from

Eq. (22).
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V. RESULTS

For typical interplanetary conditions 7% ' 12 at the earth's orbit,
the magnetic field has a direction angle @, ~ 135° or 315° and the ratio
of Bjo to Pip, T, varies between 1.5 and 4 for the solar wind plasma.
The'speed ratio, S, is of the order of 10, and the P value is of the order
of unity. Based on these values, some numerical solutions have been
carried out to describe the variations of the magnetic field on the plane
of analysis.

Figs. 1 and 2 show the perturbation of the field magnitude, B/B,, the
direction angle, @ (defined as the angle between -Uo and the local field
B), and the lines of force in the vicinity of the moon for T=2, S=10,
¢O=135° and B=1. The perturbations of the field exhibit a very complex
nature. However it can be seen that in the plasma umbral region, the mag-
nitude of the calculated magnetic field, B/B,, increases to about 25%
above the undisturbed condition. On either side of the plasma umbra the
magnitude of the field decreases to about 5% below the interplanetary con-
diti;n. As the magnitude of the field increases in the plasma umbral
region, the spacing between lines of force becomes narrower; this causes
the direction angle @ to increase in the umbral region.

The division of the plasma shadow into umbral and penumbral regions
was discussed in Reference 5. Since éhe plasma density varies continuously
through the penumral region from the interplanetary condition N, to the
void condition, it has been suggested® that the plasma penumbra be defined
as the region where 0.01 < N/N_ < 0.99 and the plasma umbra, the region

with N/NO < 0.01. Follewing this definition, the distribution of the
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lines of force in the two regions is shown in Fig. 3.

The detailed variations of the field magnitude are plotted in Fig. 4,
from which the alternating increases and decreases in the magnitude of
the magnetic field outside the umbra are noticeable. Solutions for two
different speed ratios (S=5 and 10) are plotted in Fig. 4. The solution
for S=10 shows a more prominent oscillating pattern of the field magnitude
than the solution for S=5. These figures can show the perturbations of
the field in the far wake region as well as in the near wake region. As
the distance from the moon increases, the anomaly of the magnetic field
decreases in magnitude and spreads over a wider region. Comparing the
two cases in Fig. 4, it can also be seen that the anomaly of the magnetic
field does not seem to be strongly affected by the speed ratio S.

The maximum increases in the magnitude of the field at varying dis-
tances r are presented in Fig. 5. It can be seen that for the same values
of the direction angle @,, the maximum anomalies vary only slightly for
different speed ratios. However if the speed ratio is held constant, the
maximum anomalies vary noticeably with the varying direction angle .
This effect may be explained from Eq. (10) as follows. When Bo is nearly
- perpendicular to Up, the gradient of n along the normal direction (dn/dx;)
is relatively smali. When the acute angle between By and Up decreases,
dn/3x%, increases, and so does the total induced current in the wake region.
The increasing source term directly intensifies the anomaly of the magnetic

field.
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VI. SUMMARY

A theoretical model for variations of the magnetic field in the
lunar wake is studied by directly solving Maxwell's equations for steady
state solutions. It is assumed that the total electric current is com-
posed of the magnetization current, the gradient drift current and the
curvature drift current. The plasma flow in the lunar wake is approximated
by the analytical solution obtained from a free molecule flow model!.
Numerical solutions are obtained to describe the magnetic field in the
plane passing through the center of thte moon and parallel to both the
solar wind velocity and the interplanetary magnetic field upstream of the
moon.

As the satellite passes through the solar plasma shadow of the moon,
the magnitude of the magnetic field is observed to increase in the umbral
region, while outside the umbra the perturbation of the field appears to
follow a pattern of alternating decreases and increases in the magnitude
of the field. The umbral increases in the magnitude of the magnetic field
calculated from this model agree well with experimental observations. The
magnitude of the innermost penumbral decreases calculated from this model
is too small by a factor of two or more compared with experimental obser-
vations. The calculated anomalies of the field oscillations outside the

plasma umbra are also smaller than the observed anomalies.
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FIGURE CAPTIONS

Distributions of the magnitude of the magnetic field and

the lines of force in the vicinity of the moon.
Distributions of the direction angle and the lines of force
in the vicinity of the moon. |
Distributions of the lines of force in the plasma umbral and
the plasma penumbral region.

Variations of the field magnitude for two speed ratios S8=5
and S=10, .

The maximum increases in the magnitude of the magnitude field

at varying distances r.
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